72 research outputs found

    HAR-Net: Joint Learning of Hybrid Attention for Single-stage Object Detection

    Full text link
    Object detection has been a challenging task in computer vision. Although significant progress has been made in object detection with deep neural networks, the attention mechanism is far from development. In this paper, we propose the hybrid attention mechanism for single-stage object detection. First, we present the modules of spatial attention, channel attention and aligned attention for single-stage object detection. In particular, stacked dilated convolution layers with symmetrically fixed rates are constructed to learn spatial attention. The channel attention is proposed with the cross-level group normalization and squeeze-and-excitation module. Aligned attention is constructed with organized deformable filters. Second, the three kinds of attention are unified to construct the hybrid attention mechanism. We then embed the hybrid attention into Retina-Net and propose the efficient single-stage HAR-Net for object detection. The attention modules and the proposed HAR-Net are evaluated on the COCO detection dataset. Experiments demonstrate that hybrid attention can significantly improve the detection accuracy and the HAR-Net can achieve the state-of-the-art 45.8\% mAP, outperform existing single-stage object detectors

    On reformulated zagreb indices with respect to tricyclic graphs

    Full text link
    The authors Milic˘\breve{c}evicˊ\acute{c} et al. introduced the reformulated Zagreb indices, which is a generalization of classical Zagreb indices of chemical graph theory. In the paper, we characterize the extremal properties of the first reformulated Zagreb index. We first introduce some graph operations which increase or decrease this index. Furthermore, we will determine the extremal tricyclic graphs with minimum and maximum the first Zagreb index by these graph operations.Comment: 8 pages,2 figure

    DeepDeblur: Fast one-step blurry face images restoration

    Full text link
    We propose a very fast and effective one-step restoring method for blurry face images. In the last decades, many blind deblurring algorithms have been proposed to restore latent sharp images. However, these algorithms run slowly because of involving two steps: kernel estimation and following non-blind deconvolution or latent image estimation. Also they cannot handle face images in small size. Our proposed method restores sharp face images directly in one step using Convolutional Neural Network. Unlike previous deep learning involved methods that can only handle a single blur kernel at one time, our network is trained on totally random and numerous training sample pairs to deal with the variances due to different blur kernels in practice. A smoothness regularization as well as a facial regularization are added to keep facial identity information which is the key to face image applications. Comprehensive experiments demonstrate that our proposed method can handle various blur kenels and achieve state-of-the-art results for small size blurry face images restoration. Moreover, the proposed method shows significant improvement in face recognition accuracy along with increasing running speed by more than 100 times

    CS-R-FCN: Cross-supervised Learning for Large-Scale Object Detection

    Full text link
    Generic object detection is one of the most fundamental problems in computer vision, yet it is difficult to provide all the bounding-box-level annotations aiming at large-scale object detection for thousands of categories. In this paper, we present a novel cross-supervised learning pipeline for large-scale object detection, denoted as CS-R-FCN. First, we propose to utilize the data flow of image-level annotated images in the fully-supervised two-stage object detection framework, leading to cross-supervised learning combining bounding-box-level annotated data and image-level annotated data. Second, we introduce a semantic aggregation strategy utilizing the relationships among the cross-supervised categories to reduce the unreasonable mutual inhibition effects during the feature learning. Experimental results show that the proposed CS-R-FCN improves the mAP by a large margin compared to previous related works

    Intention Oriented Image Captions with Guiding Objects

    Full text link
    Although existing image caption models can produce promising results using recurrent neural networks (RNNs), it is difficult to guarantee that an object we care about is contained in generated descriptions, for example in the case that the object is inconspicuous in the image. Problems become even harder when these objects did not appear in training stage. In this paper, we propose a novel approach for generating image captions with guiding objects (CGO). The CGO constrains the model to involve a human-concerned object when the object is in the image. CGO ensures that the object is in the generated description while maintaining fluency. Instead of generating the sequence from left to right, we start the description with a selected object and generate other parts of the sequence based on this object. To achieve this, we design a novel framework combining two LSTMs in opposite directions. We demonstrate the characteristics of our method on MSCOCO where we generate descriptions for each detected object in the images. With CGO, we can extend the ability of description to the objects being neglected in image caption labels and provide a set of more comprehensive and diverse descriptions for an image. CGO shows advantages when applied to the task of describing novel objects. We show experimental results on both MSCOCO and ImageNet datasets. Evaluations show that our method outperforms the state-of-the-art models in the task with average F1 75.8, leading to better descriptions in terms of both content accuracy and fluency

    R(Det)^2: Randomized Decision Routing for Object Detection

    Full text link
    In the paradigm of object detection, the decision head is an important part, which affects detection performance significantly. Yet how to design a high-performance decision head remains to be an open issue. In this paper, we propose a novel approach to combine decision trees and deep neural networks in an end-to-end learning manner for object detection. First, we disentangle the decision choices and prediction values by plugging soft decision trees into neural networks. To facilitate effective learning, we propose randomized decision routing with node selective and associative losses, which can boost the feature representative learning and network decision simultaneously. Second, we develop the decision head for object detection with narrow branches to generate the routing probabilities and masks, for the purpose of obtaining divergent decisions from different nodes. We name this approach as the randomized decision routing for object detection, abbreviated as R(Det)2^2. Experiments on MS-COCO dataset demonstrate that R(Det)2^2 is effective to improve the detection performance. Equipped with existing detectors, it achieves 1.4∼3.61.4\sim 3.6\% AP improvement.Comment: 10 pages, 5 figures; Accepted by CVPR202

    Progressive Representation Adaptation for Weakly Supervised Object Localization

    Full text link
    We address the problem of weakly supervised object localization where only image-level annotations are available for training object detectors. Numerous methods have been proposed to tackle this problem through mining object proposals. However, a substantial amount of noise in object proposals causes ambiguities for learning discriminative object models. Such approaches are sensitive to model initialization and often converge to undesirable local minimum solutions. In this paper, we propose to overcome these drawbacks by progressive representation adaptation with two main steps: 1) classification adaptation and 2) detection adaptation. In classification adaptation, we transfer a pre-trained network to a multi-label classification task for recognizing the presence of a certain object in an image. Through the classification adaptation step, the network learns discriminative representations that are specific to object categories of interest. In detection adaptation, we mine class-specific object proposals by exploiting two scoring strategies based on the adapted classification network. Class-specific proposal mining helps remove substantial noise from the background clutter and potential confusion from similar objects. We further refine these proposals using multiple instance learning and segmentation cues. Using these refined object bounding boxes, we fine-tune all the layer of the classification network and obtain a fully adapted detection network. We present detailed experimental validation on the PASCAL VOC and ILSVRC datasets. Experimental results demonstrate that our progressive representation adaptation algorithm performs favorably against the state-of-the-art methods.Comment: Project page: https://sites.google.com/site/lidonggg930/ws

    Intra-clip Aggregation for Video Person Re-identification

    Full text link
    Video-based person re-identification has drawn massive attention in recent years due to its extensive applications in video surveillance. While deep learning-based methods have led to significant progress, these methods are limited by ineffectively using complementary information, which is blamed on necessary data augmentation in the training process. Data augmentation has been widely used to mitigate the over-fitting trap and improve the ability of network representation. However, the previous methods adopt image-based data augmentation scheme to individually process the input frames, which corrupts the complementary information between consecutive frames and causes performance degradation. Extensive experiments on three benchmark datasets demonstrate that our framework outperforms the most recent state-of-the-art methods. We also perform cross-dataset validation to prove the generality of our method.Comment: Due to the privacy issue of person re-ID, we require to withdraw the previous version of this pape

    Perceive Where to Focus: Learning Visibility-aware Part-level Features for Partial Person Re-identification

    Full text link
    This paper considers a realistic problem in person re-identification (re-ID) task, i.e., partial re-ID. Under partial re-ID scenario, the images may contain a partial observation of a pedestrian. If we directly compare a partial pedestrian image with a holistic one, the extreme spatial misalignment significantly compromises the discriminative ability of the learned representation. We propose a Visibility-aware Part Model (VPM), which learns to perceive the visibility of regions through self-supervision. The visibility awareness allows VPM to extract region-level features and compare two images with focus on their shared regions (which are visible on both images). VPM gains two-fold benefit toward higher accuracy for partial re-ID. On the one hand, compared with learning a global feature, VPM learns region-level features and benefits from fine-grained information. On the other hand, with visibility awareness, VPM is capable to estimate the shared regions between two images and thus suppresses the spatial misalignment. Experimental results confirm that our method significantly improves the learned representation and the achieved accuracy is on par with the state of the art.Comment: 8 pages, 5 figures, accepted by CVPR201

    Learning Structured Semantic Embeddings for Visual Recognition

    Full text link
    Numerous embedding models have been recently explored to incorporate semantic knowledge into visual recognition. Existing methods typically focus on minimizing the distance between the corresponding images and texts in the embedding space but do not explicitly optimize the underlying structure. Our key observation is that modeling the pairwise image-image relationship improves the discrimination ability of the embedding model. In this paper, we propose the structured discriminative and difference constraints to learn visual-semantic embeddings. First, we exploit the discriminative constraints to capture the intra- and inter-class relationships of image embeddings. The discriminative constraints encourage separability for image instances of different classes. Second, we align the difference vector between a pair of image embeddings with that of the corresponding word embeddings. The difference constraints help regularize image embeddings to preserve the semantic relationships among word embeddings. Extensive evaluations demonstrate the effectiveness of the proposed structured embeddings for single-label classification, multi-label classification, and zero-shot recognition.Comment: 9 pages, 6 figures, 5 tables, conferenc
    • …
    corecore